Ethylene production by strains of the plant-pathogenic bacterium Pseudomonas syringae depends upon the presence of indigenous plasmids carrying homologous genes for the ethylene-forming enzyme.

نویسندگان

  • K Nagahama
  • K Yoshino
  • M Matsuoka
  • M Sato
  • S Tanase
  • T Ogawa
  • H Fukuda
چکیده

The molecular characteristics of the ethylene-forming enzymes of strains of Pseudomonas syringae were tested. The ethylene-producing activities of the nine strains as measured in vivo and in vitro were similar, except for that of P. syringae pv. mori M5. A polyclonal antibody and a DNA probe for the ethylene-forming enzyme from P. syringae pv. phaseolicola PK2 were prepared to investigate homologies among the proteins and genes for the ethylene-forming enzymes. With the exception of P. syringae pv. mori M5, eight strains tested expressed the same antigen as the ethylene-forming enzyme from P. syringae pv. phaseolicola PK2 and were homologous to DNA sequences on indigenous plasmids. Molecular masses of antigenic proteins from all ethylene-producing strains were 40 kDa. The N-terminal amino acid sequence of the purified ethylene-forming enzyme from P. syringae pv. glycinea KN130 was identical to that of the enzyme from P. syringae pv. phaseolicola PK2. These results show that the ethylene-forming enzymes encoded by the indigenous plasmid(s) in the pathogenic bacteria examined were similar.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Arabidopsis thaliana and Pseudomonas syringae in the Study of Plant Disease Resistance and Tolerance.

The interaction between Arabidopsis thaliana and the bacterium Pseudomonas syringae is being developed as a model experimental system for plant pathology research. Race-specific ("gene-for-gene") resistance has been demonstrated for this interaction, and pathogen genes that determine avirulence have been isolated and characterized. Because certain lines of both Arabidopsis and soybean are resis...

متن کامل

Syringae Is Not Required for Stable Ethylene Production in Recombinant

Ethylene (C2H4) is a simple alkene of high commercial value due to multitude of large-scale uses in plastic industry, and as a potential fuel for spark-ignition piston engines. Currently ethylene is derived entirely from non-renewable sources, but it can also be produced directly from atmospheric CO2 via microbial biosynthesis in photosynthetic cyanobacterial hosts by the expression of ethylene...

متن کامل

بررسی اثر چند ژن بیماری زا در زندگی اپیفیتی (Pseudomonas syringae)

Pseudomonas syringae is a phytopathogenic bacterium with a wide host range. The biology of this bacterium consists of two phases. The first phase is the indication of disease on the host plant which generally appears in the form of necrosis on the aerial parts of plant (pathogenicity phase). The second phase is a rapid multiplication of bacteria on the aerial surface of the plant without inflic...

متن کامل

بررسی اثر چند ژن بیماری زا در زندگی اپیفیتی (Pseudomonas syringae)

Pseudomonas syringae is a phytopathogenic bacterium with a wide host range. The biology of this bacterium consists of two phases. The first phase is the indication of disease on the host plant which generally appears in the form of necrosis on the aerial parts of plant (pathogenicity phase). The second phase is a rapid multiplication of bacteria on the aerial surface of the plant without inflic...

متن کامل

Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae

Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a clos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 140 ( Pt 9)  شماره 

صفحات  -

تاریخ انتشار 1994